
drfdapc Documentation
Release 0.4

Christian Ledermann

Jul 26, 2018

Contents

1 License 1

2 Indices and tables 5

Python Module Index 7

i

ii

CHAPTER 1

License

Copyright (c) 2015 Christian Ledermann and Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. DRF Deny All - Allow Specific Permission
Classes.

In Django rest Framework the permission classes work as:

If any permission check fails an [. . .] exception will be raised, and the main body of the view will not run.

This implementation of permission classes takes a list of functions that determine if the access is allowed. If any of
the functions return True, the access is allowed, if none of the permission checks passes the access will be denied.
This enables to write small, reusable and chainable permissions

The BasePermission classes provide the has_permission(self, request, view) and has_object_permission(self, request,
view, obj) methods.

The Default is deny_all which means when you subclass DABasePermission, DARWBasePermission or DACrud-
BasePermission you have to set *_permissions explicitly on your class to allow access.

If you only need view level security you may set object_rw_permissions = (allow_all,) otherwise your view will
reject users when .get_object() is called through REST framework’s view machinery.

class permissions.DABasePermission
Deny Allow Base Permisson.

1

drfdapc Documentation, Release 0.4

Permissions subclassed from this Base class will run all permission checks specified in the rw_permissions
tuple.

It does not check if it is a read or a write access and treat all access methods in the same way.

has_object_permission(request, view, obj)
Object level permissions.

All request methods are checked against the object_rw_permissions. If None of those permissions returns
True the access is denied.

This is run by REST framework’s generic views when .get_object() is called. If you’re writing your own
views and want to enforce object level permissions, or if you override the get_object method on a generic
view, then you’ll need to explicitly call the .check_object_permissions(request, obj) method on the view at
the point at which you’ve retrieved the object.

has_permission(request, view)
Check permissions.

Before running the main body of the view each permission in rw_permissions is checked.

All request methods are treated in the same way.

class permissions.DACrudBasePermission
Deny Allow Base Read/Write specific Permisson.

Permissions subclassed from this Base class will run all permission checks specified in the rw_permissions tuple
for all read and write access methods.

If none of the rw_permissions passed it will check the permissions based on the http access methods.

For read access (options, head, get) methods all permissions in the read_permissions methods are checked.

For create access (post) all permissions in the add_permissions are checked.

For update access (put) all permissions in the change_permissions are checked.

For delete access (delete) all permissions in the delete_permissions are checked.

has_object_permission(request, view, obj)
Object level permissions.

All request methods are checked against the object_rw_permissions. If None of those Permissions returns
True the permissions are checked against object_read_permissions if the request method is a get, head
or options, or against object_change_permissions for put‘and ‘patch, against object_add_permissions for
post and against object_delete_permissions for delete methods.

This is run by REST framework’s generic views when .get_object() is called. If you’re writing your own
views and want to enforce object level permissions, or if you override the get_object method on a generic
view, then you’ll need to explicitly call the .check_object_permissions(request, obj) method on the view at
the point at which you’ve retrieved the object.

has_permission(request, view)
Check permissions.

Before running the main body of the view each permission in rw_permissions is checked. If None of these
permissions allows access then the permissions in read_permissions are checked for the (options, head,
get) methods. For the post method all permissions in the add_permissions are checked. For put and patch
methods all permissions in the change_permissions are checked. For the delete method all permissions in
the delete_permissions are checked.

class permissions.DARWBasePermission
Deny Allow Base Read/Write specific Permisson.

2 Chapter 1. License

drfdapc Documentation, Release 0.4

Permissions subclassed from this Base class will run all permission checks specified in the rw_permissions tuple
for all read and write access methods.

If none of the rw_permissions passed it will check the permissions based on the http access methods.

has_object_permission(request, view, obj)
Object level permissions.

All request methods are checked against the object_rw_permissions. If None of those Permissions returns
True the permissions are checked against object_read_permissions if the request method is a get, head or
options, or against object_write_permissions for put, patch, post and delete methods.

This is run by REST framework’s generic views when .get_object() is called. If you’re writing your own
views and want to enforce object level permissions, or if you override the get_object method on a generic
view, then you’ll need to explicitly call the .check_object_permissions(request, obj) method on the view at
the point at which you’ve retrieved the object.

has_permission(request, view)
Check permissions.

Before running the main body of the view each permission in rw_permissions is checked. If None of these
permissions allows access then the permissions in read_permissions are checked for the (options, head,
get) methods. For write access (post, put, patch, delete) methods all permissions in the write_permissions
methods are checked.

permissions.allow_all(*args, **kwargs)
Allow anyone.

This permission will allow unrestricted access, regardless of the request being authenticated or unauthenticated.

permissions.allow_authenticated(request, *args, **kwargs)
Allow authenticated users.

This permission class will deny permission to any unauthenticated user, and allow permission to any authenti-
cated user.

permissions.allow_authorized_key(request, view, *args, **kwargs)
Allow access with a shared secret.

The request must contain a authentication header that matches one of the API Keys.

The API Keys are set in the authorized_keys attribute of the view. This is useful for authorization between
services that communicate via drf where you’d rather have the keys as configuration and connect without au-
thentication.

permissions.allow_staff(request, *args, **kwargs)
Allow staff access.

This permission allows access to any user that has the is_staff flag set.

permissions.allow_superuser(request, *args, **kwargs)
Superuser access.

This permission allows access to any user that has the is_superuser flag set.

permissions.authenticated_users(func)
Abstract common authentication checks as a decorator.

request is required either as the first positional argument or as a Keyword argument

permissions.deny_all(*args, **kwargs)
Deny Access to everyone.

3

drfdapc Documentation, Release 0.4

This permission is not strictly required, since you can achieve the same result by using an empty tuple for the
permissions setting, but you may find it useful to specify this class because it makes the intention explicit.

This permission on it’s own is not useful as nobody will ever be able to access a view protected with it.

4 Chapter 1. License

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

5

drfdapc Documentation, Release 0.4

6 Chapter 2. Indices and tables

Python Module Index

p
permissions, 1

7

drfdapc Documentation, Release 0.4

8 Python Module Index

Index

A
allow_all() (in module permissions), 3
allow_authenticated() (in module permissions), 3
allow_authorized_key() (in module permissions), 3
allow_staff() (in module permissions), 3
allow_superuser() (in module permissions), 3
authenticated_users() (in module permissions), 3

D
DABasePermission (class in permissions), 1
DACrudBasePermission (class in permissions), 2
DARWBasePermission (class in permissions), 2
deny_all() (in module permissions), 3

H
has_object_permission() (permis-

sions.DABasePermission method), 2
has_object_permission() (permis-

sions.DACrudBasePermission method),
2

has_object_permission() (permis-
sions.DARWBasePermission method), 3

has_permission() (permissions.DABasePermission
method), 2

has_permission() (permissions.DACrudBasePermission
method), 2

has_permission() (permissions.DARWBasePermission
method), 3

P
permissions (module), 1

9

	License
	Indices and tables
	Python Module Index

